Note: This unit version is currently being edited and is subject to change!

ELEC5203: Topics in Power Engineering (2014 - Semester 2)

Download UoS Outline

Unit: ELEC5203: Topics in Power Engineering (6 CP)
Mode: Normal-Day
On Offer: Yes
Level: Postgraduate
Faculty/School: School of Electrical and Information Engineering
Unit Coordinator/s: Dr Sathiakumar, Swamidoss
Session options: Semester 2
Versions for this Unit:
Site(s) for this Unit: http://www.eelab.usyd.edu.au/ELEC5203
Campus: Camperdown/Darlington
Pre-Requisites: None.
Brief Handbook Description: This unit of study aims to give students an in depth understanding of modern power electronic equipment supporting the intelligent grid of the future and the associated electronic control. Electronic power systems rely on a complex system of methods and equipment for controlling the voltage levels and for maintaining the stability and security of the supply. It covers recent findings in the fundamental theory and the massive change of modern power electronic equipment and methods supporting the electricity grids. It also looks at the huge influence of computer-aided analysis of electric power systems and the effects of the deregulation of the industry.

The specific topics covered are as follows:

Introduction to power electronic systems and applications in the electrical grid, power semiconductors, reactive power control in power systems, flexible AC transmission systems (FACTS), high-voltage direct-current transmission (HVDC), static reactive power compensator, dynamic voltage restorer, unified-power flow controller, line-commutated converters, thyristor-controlled equipment, phase-angle regulators, voltage-source converter based power electronic equipment, harmonics, power quality, passive and active filters, distributed generation, grid-interconnection of renewable energy sources, intelligent grid technologies.
Assumed Knowledge: ELEC3203 AND ELEC3204. Familiarity with basic mathematics and physics; competence with basic circuit theory and understanding of electricity grid equipment such as transformers, transmission lines and associated modeling; and fundamentals of power electronic technologies.
Lecturer/s: Dr Sathiakumar, Swamidoss
Timetable: ELEC5203 Timetable
Time Commitment:
# Activity Name Hours per Week Sessions per Week Weeks per Semester
1 Lecture 2.00 1 13
2 Tutorial 2.00 1 8
3 Independent Study 2.00 13
4 Laboratory 2.00 1 5
T&L Activities: Tutorial: Laboratories and tutorials alternate during the semester in the same session. Tutorials are devoted to practicing basic concepts covered in the lectures and understanding how more complex tasks can be handled by putting these basic concepts together.

Independent Study: Students need to do some preparation for tutorials and labs. they may also need to read the references to fully master the basic concepts covered in the lectures.

Laboratory: Laboratories and tutorials alternate during the semester in the same session. Labs are devoted to hands on experience with high voltage and real power system components. They will also present their results in the format of lab reports.

Attributes listed here represent the key course goals (see Course Map tab) designated for this unit. The list below describes how these attributes are developed through practice in the unit. See Learning Outcomes and Assessment tabs for details of how these attributes are assessed.

Attribute Development Method Attribute Developed
Extensive design and analysis work is done in tutorials, labs, and assignments. Design (Level 4)
Gain an understanding of the basic concepts in power transmission and electricity networks. It builds on the previous knowledge gained in circuits and power electronics. Engineering/IT Specialisation (Level 5)
Gain an ability to apply their knowledge of circuit fundamentals and power electronics to solving transmission problems in the electricity networks. Maths/Science Methods and Tools (Level 3)
Need to understand and follow lab procedures and conduct experiments under controlled conditions. Need to read IEEE and IET Research Papers and Articles on Industrial Standards and assimilate this knowledge in evaluating various solutions to transmission problems. Information Seeking (Level 2)
Students need to work in groups in the labs. They need to write lab reports, as well as do some research and present it in the form of assignment reports. Communication (Level 2)
Group work in labs and tutorials. Project Management and Team Skills (Level 2)

For explanation of attributes and levels see Engineering & IT Graduate Outcomes Table.

Learning outcomes are the key abilities and knowledge that will be assessed in this unit. They are listed according to the course goal supported by each. See Assessment Tab for details how each outcome is assessed.

Design (Level 4)
1. Ability to employ harmonic generation equipment using a programmable 15kVA commercial inverter coupled with other programmable inverter units to filter the harmonics.
2. Ability to solve and design specific problems of reactive compensation and harmonic filtering using specific methodologies, knowledge and computer modelling tools.
3. Ability to solve transmission problems by identifying equipment needed, as well as the size and limitations of this equipment using computer experiments and previous case studies as drivers.
4. Ability to select and design the operation of a power electronic based reactive power compensator for a given transmission line problem using principles and methodologies developed.
Engineering/IT Specialisation (Level 5)
5. Ability to demonstrate an understanding of reactive power compensation in transmission and distribution electricity networks to the extent of the material and work presented.
6. Proficiency in using equipment and associated programming tools to the extent of the work presented in the course.
7. Ability to demonstrate an understanding of technologies, principles and techniques used in specific power transmission problems, to the extent of the material presented throughout the course.
Information Seeking (Level 2)
8. Ability to undertake inquiry and knowledge development by identifying the limits of the available information on transmission problems and drawing on IEEE and IET research papers and articles on industrial standards to synthesise the most pertinent details.
Communication (Level 2)
9. Ability to make written and oral presentations in the form of assignments, tutorial presentations and lab reports using varied media aids and tools, to convey complex engineering material concisely and accurately.
Project Management and Team Skills (Level 2)
10. Ability to work in a team by assuming appropriate roles and balancing responsibilities so that a timely performance of project work can be achieved in a laboratory environment.
Assessment Methods:
# Name Group Weight Due Week Outcomes
1 Lab Skills Yes 10.00 Multiple Weeks 1, 2, 3, 5, 6, 9, 10,
2 Mid-Semester Exam No 30.00 Week 10 1, 2, 3, 4, 5,
3 Final Exam No 60.00 Exam Period 1, 2, 3, 5, 6, 7, 8,
Assessment Description: Laboratory: exercises experiments on power system modelling, computation, and simulation (10%*3);

Mid-semester exam: test of knowledge learned in lecture and tutorial (30%);

Final exam: test of knowledge learned in lecture, tutorial, assignment, and lab (40%).

Late submissions: Required to submit lab report for assessment by 11:00- 13:00 of Tuesday of the week following the lab session. Normally, no submission will be accepted after the end of this time. Only in special circumstances (i.e. with a medical certificate from a GP) will submissions be accepted after the required submission deadline.
Grading:
Grade Type Description
Standards Based Assessment Final grades in this unit are awarded at levels of HD (High Distinction), D (Distinction), CR (Credit), P (Pass) and F (Fail) as defined by University of Sydney Assessment Policy. Details of the Assessment Policy are available on the Policies website at http://sydney.edu.au/policies . Standards for grades in individual assessment tasks and the summative method for obtaining a final mark in the unit will be set out in a marking guide supplied by the unit coordinator.
Policies & Procedures: See the policies page of the faculty website at http://sydney.edu.au/engineering/student-policies/ for information regarding university policies and local provisions and procedures within the Faculty of Engineering and Information Technologies.
Recommended Reference/s: Note: References are provided for guidance purposes only. Students are advised to consult these books in the university library. Purchase is not required.
Online Course Content: http://www.eelab.usyd.edu.au/ELEC5203
Note on Resources: http://www.eelab.usyd.edu.au/ELEC5203

IEEE and IET Research Papers and Articles

Industrial Standards

Note that the "Weeks" referred to in this Schedule are those of the official university semester calendar https://web.timetable.usyd.edu.au/calendar.jsp

Week Description
Week 1 Overview of modern electrical power systems, historical developments, AC vs. DC, deregulated electricity industry, Australia’s electricity market, and AEMO.
Week 2 Fundamental concepts of power systems engineering such as: load compensation, power factor correction, load balancing and voltage regulation. Reactive power control in AC power systems, analytical expressions for the power flow, both real and reactive, between two AC voltage sources connected with impedance representing the transmission line.
Week 3 Power factor correction and the behaviour of the compensator, analysis of the link between compensation and voltage control, system load line, control of power and frequency in a power system, load profiles and management strategies for utilities to control power and frequency, economic dispatch.
Week 4 The theory of transmission network compensation, resistance and inductance as parameters of the transmission line.
Week 5 Transmission line capacitance, fundamental theory of two-port (four-terminal) networks using four parameters to describe the network in terms of the input and output voltages and current, classification of the transmission lines in three broad categories based on their length: short, medium and long, equivalent circuits of the short, medium and long transmission lines, the two-port network theory to derive the value of each of the four parameters for the transmission line.
Week 6 The case of uncompensated transmission lines, unified voltage and current equations of long lossless transmission line, natural loading of a transmission line and its surge impedance, the uncompensated line under unloaded (open-circuit) conditions, loaded radial line with fixed sending-end voltage, the maximum power and steady-state stability of a transmission line.
Week 7 Power semiconductor devices, basic current-voltage characteristics of these devices, reverse recovery phenomena of the power diodes, the thyristor based on the two-transistor equivalent model, power semiconductors and switching frequency, power and voltage parameters.
Week 8 Compensated transmission lines, passive and active compensators, the theory of static shunt compensation, the case of multiple shunt reactors along a long line, the case of voltage control by means of switched shunt compensation, the mid-point shunt compensator.
Week 9 Power semiconductor desirable characteristics, switching circuit rules, switching losses and associated simplified waveforms from an inductive circuit, power losses calculations, power electronic converter auxiliary hardware components, heat transfer and heat sinks, practical examples of hardware arrangements of power electronic converters.
Week 10 The theory of series compensation, power-transfer characteristics and maximum transmissible power of a given transmission line, practical cases of series compensation.
Assessment Due: Mid-Semester Exam
Week 11 Voltage-source converter, single-phase half-bridge VSC, single-phase full-bridge VSC, three-phase six-step VSC, multilevel VSCs, single-phase half-bridge neutral-point-clamped (NPC) VSC, single-phase full-bridge NPC VSC, pulse-Width-Modulated (PWM) VSCs.
Week 12 HVDC technology and a historical progress, thyristor based and current source converter (CSC) technology, recent advances associated with the fully controlled semiconductor based and voltage source converter (VSC) technology, new applications and opportunities for HVDC.
Week 13 Distributed generation (embedded generation) technologies, motivation for using DG systems and the potential impact on the power network, energy storage, flywheels, superconducting magnetic energy storage (SMES), supercapacitors, hydrogen storage, hydro pumped storage, batteries including flow battery technology, double layer capacitors.
Exam Period Assessment Due: Final Exam

Course Relations

The following is a list of courses which have added this Unit to their structure.

Course Year(s) Offered
Master of Engineering (Power) 2011, 2012
Computer Engineering 2010
Electrical 2010, 2011, 2012, 2013, 2014
Electrical Engineering / Arts 2011, 2012, 2013, 2014
Electrical Engineering / Commerce 2010, 2011, 2012, 2013, 2014
Electrical (Bioelectronics) 2011, 2012
Electrical Engineering (Bioelectronics) / Arts 2011, 2012
Electrical Engineering (Bioelectronics) / Science 2011, 2012
Electrical Engineering / Medical Science 2011, 2012, 2013, 2014
Electrical Engineering / Project Management 2012, 2013, 2014
Electrical Engineering / Science 2011, 2012, 2013, 2014
Electrical (Computer) 2011, 2012, 2013, 2014
Electrical Engineering (Computer) / Arts 2011, 2012, 2013, 2014
Electrical Engineering (Computer) / Commerce 2012, 2013, 2014, 2011
Electrical Engineering (Computer) / Science 2011, 2012, 2013, 2014
Electrical Engineering (Computer) / Law 2012, 2013, 2014
Electrical (Power) 2010, 2011, 2012, 2013, 2014
Electrical Engineering (Power) / Arts 2011, 2012, 2013, 2014
Electrical Engineering (Power) / Science 2011, 2012, 2013, 2014
Electrical (Telecommunications) 2011, 2012, 2013, 2014
Electrical Engineering (Telecommunications) / Science 2011, 2012, 2013, 2014
Software 2010, 2011, 2012, 2013, 2014
Software Engineering / Arts 2011, 2012, 2013, 2014
Software Engineering / Commerce 2010, 2011, 2012, 2013, 2014
Software Engineering / Medical Science 2011, 2012, 2013, 2014
Software Engineering / Project Management 2012, 2013, 2014
Software Engineering / Science 2011, 2012, 2013, 2014
Telecommunications 2010
Bachelor of Information Technology (Computer Science) 2010, 2011, 2012
Information Technology (Computer Science)/Arts 2012
Graduate Certificate in Engineering 2011, 2012, 2013, 2014
Graduate Diploma in Engineering 2011, 2012, 2013, 2014
Master of Engineering (2013+ ) 2013, 2014
Master of Engineering (Electrical) 2011, 2012
Master of Engineering (Network) 2012
Master of Engineering (Wireless) 2012
Master of Professional Engineering (Electrical) 2010, 2011, 2012, 2013, 2014
Master of Professional Engineering (Power) 2010, 2011, 2012, 2013, 2014
Computer Engineering / Commerce 2010
Electrical Engineering (Computer) / Medical Science 2011, 2013, 2014
Electrical Engineering (Telecommunications) / Arts 2011, 2012, 2013, 2014
Electrical Engineering (Telecommunications) / Medical Science 2011, 2012, 2013, 2014
Information Technology (Computer Science) / Science 2012

Course Goals

This unit contributes to the achievement of the following course goals:

Attribute Practiced Assessed
Design (Level 4) Yes 54.01%
Engineering/IT Specialisation (Level 5) Yes 34.58%
Maths/Science Methods and Tools (Level 3) Yes 0%
Information Seeking (Level 2) Yes 8.57%
Communication (Level 2) Yes 1.43%
Professional Conduct (Level 2) No 0%
Project Management and Team Skills (Level 2) Yes 1.43%

These goals are selected from Engineering & IT Graduate Outcomes Table which defines overall goals for courses where this unit is primarily offered. See Engineering & IT Graduate Outcomes Table for details of the attributes and levels to be developed in the course as a whole. Percentage figures alongside each course goal provide a rough indication of their relative weighting in assessment for this unit. Note that not all goals are necessarily part of assessment. Some may be more about practice activity. See Learning outcomes for details of what is assessed in relation to each goal and Assessment for details of how the outcome is assessed. See Attributes for details of practice provided for each goal.